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Abstract

The U.S. Fish and Wildlife Service (USFWS) is responsible for reviewing the biological status of hundreds of species to
determine federal status designations under the Endangered Species Act. The longleaf pine Pinus palustris ecological
system supports many priority at-risk species designated for review, including five species of herpetofauna: gopher
tortoise Gopherus polyphemus, southern hognose snake Heterodon simus, Florida pine snake Pituophis melanoleucus
mugitus, gopher frog Lithobates (Rana) capito, and striped newt Notophthalmus perstriatus. To inform status decisions
and conservation planning, we developed habitat suitability models to 1) identify habitat features that best predict
species presence and 2) estimate the amount and distribution of suitable habitat across each species’ range under
current conditions. We incorporated expert judgment from federal, state, and other partners to capture variation in
ecological settings across species’ ranges, prioritize predictor variables to test in models, mitigate data limitations by
informing the selection of pseudoabsence points, qualitatively evaluate model estimates, and improve the likelihood
that experts will trust and use model predictions for conservation. Soil characteristics, land cover, and fire interval
strongly influenced habitat suitability for all species. Suitable habitat was distributed on known species strongholds, as
well as private lands without known species records. Between 4.7% (gopher frog) and 14.6% (gopher tortoise) of the
area in a species’ range was classified as suitable habitat, and between 28.1% (southern hognose snake) and 47.5%
(gopher frog) of suitable habitat was located in patches larger than 1 km? (100 ha) on publicly owned lands. By
overlaying predictions for each species, we identified areas of suitable habitat for multiple species on protected and
unprotected lands. These results have direct applications to management and conservation planning: partners can
tailor site-level management based on attributes associated with high habitat suitability for species of concern;
allocate survey effort in areas with suitable habitat but no known species records; and identify priority areas for
management, land acquisitions, or other strategies based on the distribution of species records, suitable habitat, and
land protection status. These results can aid regional partners in implementing effective conservation strategies and
inform status designation decisions of the USFWS.
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Introduction

Currently, the U.S. Fish and Wildlife Service (USFWS) is
responsible for reviewing the biological status of
hundreds of at-risk species to determine if listing is
warranted (hereafter, listing decisions) under the U.S.
Endangered Species Act (ESA 1973, as amended; USFWS
2020a). Each of these at-risk species require formal status
assessments to characterize risk of extinction and inform
listing decisions (USFWS 2016; Smith et al. 2018), and
many species are also the focus of conservation planning
efforts by federal, state, and other partners to recover or
sustain species before they become rarer (Sutherland
and deMaynadier 2012; Pickens et al. 2017). Estimates of
demographic rates, population abundance, and risk of
extinction are valuable criteria that inform listing and
conservation decisions (Beissinger and Westphal 1998;
McGowan et al. 2017); however, acquiring these esti-
mates remains challenging for most species including
rare or cryptic species on which conservation efforts
often focus. In light of these challenges, status assess-
ments and conservation planning efforts frequently rely
on information about the spatial distribution of species
and their habitats, which can be more easily estimated
for data-limited species (e.g., Engler et al. 2004) and
linked to projections of abundance or extinction risk for
species if or when additional data are available (e.g.,
Larson et al. 2004; McGowan et al. 2017).

Habitat suitability models (HSMs: also called species
distribution models) are now commonly used tools for
estimating the distribution of species, their habitats, and
threats (Guisan and Zimmermann 2000; Franklin 2010). In
short, HSMs use measures of environmental and
landscape attributes (e.g., soil characteristics, canopy
cover, fragmentation, rainfall) in places where a species
was known to occur over some time scale to project
where similar conditions occur throughout the species’
range (Boyce et al. 2002; Engler et al. 2004; Elith and
Leathwick 2009; Franklin 2010). Known species locations
(presence data) can be collected from records in natural
history collections, via systematic surveys (e.g., Enge et
al. 2014), or opportunistically (e.g., through volunteer-
reported, or “citizen science”, data: Bradter et al. 2018).
The projected habitat distributions can then be used to
understand species—habitat relationships, predict where
potentially suitable habitat is likely to occur, and
prioritize areas for surveys for new populations, habitat
management, parcel acquisition or designation, species
translocation, and other applications related to conser-
vation planning (Larson et al. 2004; Elith and Leathwick
2009; Franklin 2010; Guisan et al. 2013; Villero et al. 2017).
Robust HSMs can also be used to project future habitat
distributions under different environmental change
scenarios (Thuiller 2003; Guisan et al. 2013) and inform
long-term planning.
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Developing HSMs that inform listing and conservation
decisions at large spatial scales (i.e, a species’ range)
requires addressing at least two issues. First, ecological
and genetic variability can exist in wide-ranging species,
so researchers can improve predictions of HSMs devel-
oped across a species’ range if models adequately
account for this regional variation (Murphy and Lovett-
Doust 2007). If researchers know or expect ecological or
genetic variability, they can identify geographic units
that capture this variability, and build HSMs to estimate
different species-habitat relationships among these
units (e.g., May et al. 2011). Second, spatially extensive
information about species presences is often available
from state-maintained and other databases (e.g., natural
heritage programs: Groves et al. 1995), but absence
information is not usually collected and available across a
species’ range. Multiple approaches have been devel-
oped to predict habitat suitability using presence and
pseudoabsence (“background”) data (e.g., generalized
linear models or machine-learning models, such as
MaxEnt: Guisan and Zimmermann 2000; Phillips et al.
2006, 2009). However, the accuracy of HSM predictions
generally increases with the quality of absence informa-
tion provided (Brotons et al. 2004) and reduces the
effects of spatial or detection biases (Gu and Swihart
2004). For example, Bradter et al. (2018) used records
when experts reported nontarget, but not target, species
as “inferred absences,” and found that supplying HSMs
with inferred absences improved model accuracy com-
pared to using random background points.

When no absence information is available, studies
have used expert judgement to inform different model
components, such as the set of habitat predictors
evaluated in HSMs and prior estimates for species—
habitat relationships, to supplement presence-only data
and improve model predictions (Murray et al. 2009;
O'Leary et al. 2009; Arfan et al. 2018; Reside et al. 2019).
We note that some applications using expert judgment
have found its inclusion did not substantially improve
HSM predictive ability (e.g., Pearce et al. 2001; Seoane et
al. 2005; Charney 2012); however, it is reasonable that
adopting recommended best practices for expert elici-
tation can increase the accuracy of expert judgment and,
in turn, the predictions of HSMs that it informs (Martin et
al. 2012; Addison et al. 2013; Arfan et al. 2018; Reside et
al. 2019). Moreover, involving the same experts during
the model development phase who will ultimately be
the end-users of model outputs can ensure those
outputs are trusted by experts and likely to be relevant
and used in decision making (Addison et al. 2013; Guisan
et al. 2013).

We integrated expert opinion into range-wide HSMs
for at-risk species designated for status assessments by
the USFWS. Our focal species, five sympatric herpeto-
fauna associated with the longleaf pine Pinus palustris
ecosystem, were a priority for study by the USFWS, our
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principal partner. Our goals were to 1) identify habitat
features that best predict species presence and 2)
estimate the amount and distribution of potential
suitable habitat across each species’ range under current
conditions at the time of the analysis (2018). We
incorporated expert judgment from federal, state, and
other partners with experience in research and manage-
ment of these species to capture variation in ecological
settings across species’ ranges, prioritize predictors to
test in models, mitigate data limitations by informing the
selection of pseudoabsence points, and qualitatively
evaluate model estimates. We also intended the
collaborative involvement of experts in the modeling
process to improve the likelihood that experts will trust
and use model predictions for conservation planning
(Villero et al. 2017). The results of this study will inform
upcoming status assessments and spatially explicit
conservation planning for these five focal species, and
our broader approach—using expert judgment to
improve the accuracy of HSMs—is applicable for other
data-limited species.

Methods

Study system, species, and extent

The longleaf pine ecosystem supports many priority
at-risk species designated for status reviews, including
our five focal species of herpetofauna: the gopher
tortoise Gopherus polyphemus, southern hognose snake
Heterodon simus, Florida pine snake Pituophis melano-
leucus mugitus, gopher frog Lithobates (Rana) capito, and
striped newt Notophthalmus perstriatus. Collectively,
these species span several ecoregions across the
southeastern coastal plain of the United States from
Louisiana to North Carolina. They are associated with
uplands characterized as xeric longleaf pine savannabhs,
scrub, flatwoods, hammocks, coastal dunes, and sandhill
habitats that typically have well-drained, sandy soil, low
canopy cover, and adequate herbaceous ground cover
(Auffenberg and Franz 1982; Tuberville et al. 2000; Smith
et al. 2006; Roznik et al. 2009; Miller et al. 2012; Beane et
al. 2014; Farmer et al. 2017). Frequent fire has long been
established as the key driver of the natural disturbance
regimes that influence population and community
dynamics in longleaf pine and related systems (Platt et
al. 1988; Glitzenstein et al. 1995; Van Lear et al. 2005). The
gopher frog and striped newt additionally use isolated,
ephemeral wetlands with open canopies (Greenberg
2001; Humphries and Sisson 2012; Enge et al. 2014;
Farmer et al. 2017). Structural and functional features of
these systems have been affected to varying degree by
extensive habitat loss, fragmentation, and degradation
from land use change and fire exclusion (Outcalt and
Sheffield 1996). Consequently, regional or range-wide
population declines have been observed or suspected
over the past century due to these and other stressors
for the gopher tortoise (Auffenberg and Franz 1982;
Diemer 1986; Hermann et al. 2002; McCoy et al. 2006;
Smith et al. 2006), southern hognose snake (Tuberville et
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al. 2000), Florida pine snake (Franz 1992; Miller et al.
2012), gopher frog (Semlitsch et al. 1995; Enge et al.
2014), and striped newt (Farmer et al. 2017). Although
previous efforts have assessed habitat suitability at local
scales (e.g., a single protected area, multiple counties) for
the gopher tortoise (Baskaran et al. 2006; Kowal et al.
2014; Johnson et al. 2017) and at the range-wide scale
for the gopher frog (Johnson et al. 2017) and striped
newt (May et al. 2011), range-wide HSMs are needed for
all five species that incorporate recent occurrence data
and account for potential regional variation in species-
habitat relationships.

Our study extent encompassed the combined ranges
of the five focal species (range maps downloaded from
the U.S. Geological Survey (USGS) Gap Analysis Project;
USGS 2001) in the southeastern United States (Figure 1).
The extent included four U.S. Environmental Protection
Agency (EPA) Level Ill ecoregions—the Middle Atlantic
Coastal Plain, Southeastern Plains, Southern Coastal
Plains, and Southern Florida Coastal Plain—which were
composed of several Level IV ecoregions representing
variable ecological settings and habitat types, including
the Sand Hills, Southern Pine Plains and Hills, Central
Florida Ridges and Uplands, Gulf Coast Flatwoods, and
Sea Island Flatwoods (EPA 2018b).

Species presence and pseudoabsence data

Unless otherwise noted, we performed all spatial
analyses in ArcGIS version 10.4 (ESRI, Redlands, CA) and
statistical analyses in R version 3.1 (R Core Team 2016).
We compiled a geospatial database of occurrence
records for each species (Table 1; Figure 1) from datasets
maintained by natural heritage programs and state
agencies within all states in our study extent, USFWS,
U.S. Forest Service, U.S. Department of Defense, aca-
demic researchers, and HerpMapper—an online platform
where species records are reported by the public and
validated by professional herpetologists (HerpMapper
2018). Records included opportunistic sightings, as well
as observations from systematic research and monitoring
studies (e.g., Enge et al. 2014).

We applied two data filtering steps to maximize the
likelihood that all presence points used in models
indicate places with currently suitable habitat conditions
that facilitate species occupancy. First, from the full
location dataset, we removed any record found before
1981. We chose this cutoff year in consultation with
experts because it achieved a balance of including the
majority of records for our focal species, most of which
were data-limited, while excluding earlier records that
typically had lower spatial accuracy and represented
locations where the habitat conditions have likely
changed since the species was observed. Second, we
removed any record found after 1980 that data
managers (e.g., state agencies, natural heritage pro-
grams) ranked as likely extirpated; this ranking typically
signified the location had been developed since the
animal was observed. We checked the accuracy of these
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Figure 1. Species localities (N = 69,027) from 1880 to 2018 for the gopher tortoise Gopherus polyphemus, gopher frog Lithobates
(Rana) capito, striped newt Notophthalmus perstriatus, southern hognose snake Heterodon simus, and Florida pine snake Pituophis
melanoleucus mugitus collected for developing habitat suitability models across the study extent (light outlined counties in

background) in the southeastern United States.

rankings by overlaying any point deemed likely extirpat-
ed with the 2011 National Land Cover Dataset (see
below) to confirm the presence of developed or
agriculture land. All records emerging from the filtering
steps yielded location (decimal degrees) recorded to five
or more decimal places (< 2 m). To reduce potential
biases that can result from spatially clustered localities
(Phillips et al. 2009; Boria et al. 2014), we applied a final
filter by randomly removing records for each species so
that no records in the final presence dataset occurred
within 150 m of each other. We chose this distance by
generating correlograms of predictors (see below) at
presence points. Correlograms for predictors indicated
the minimum distance where spatial autocorrelation was
negligible (i.e., where 95% confidence intervals for
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Moran’s | overlapped 0) ranged between 50 and 250
m, so we chose an interpoint distance of 150 m as an
average value to indicate spatial independence.
Because robust absence data do not currently exist for
these species, we used an HSM approach that uses
presence and pseudoabsence points across a species’
range to compare the range and variation of available
habitat to the subset of habitat conditions found at
known species locations (e.g., Engler et al. 2004; Barrett
et al. 2014). However, we performed additional steps to
use expert judgment to inform where and how
pseudoabsence points were generated, which were
designed to improve the quality of absence information
and overall accuracy of HSM predictions. We conducted
an expert elicitation exercise using Google Earth (Google
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Table 1. Descriptive statistics for presence and pseudoabsence records (1880-2018) used for habitat suitability modeling for the
gopher tortoise Gopherus polyphemus (GT), southern hognose snake Heterodon simus (SHS), Florida pine snake Pituophis
melanoleucus mugitus (FPS), gopher frog Lithobates (Rana) capito (GF), and striped newt Notophthalmus perstriatus (SN) across
species’ ranges in the southeastern United States. Pseudoabsence values represent the number and percentages of records used in

models at a 3:1 ratio to presence records.

GT SHS FPS GF SN
Presences
Total occurrence records 63,273° 1,954 1,621 2,381 391
Removed with historical (pre-1981) filter, no. (%) 174 (0.3) 280 (14.3) 342 (21.1) 235 (9.9) 82 (21.0)
Removed with minimum interpoint distance filter, no. (%) 48,927 (77.3) 840 (43.0) 623 (38.4) 1,248 (52.4) 58 (14.8)
Total used 15410 1,113 996 1,133 251
Away from road, no. (%) 14,844 (96.3) 163 (14.6) 411 (41.3) — —
On/within 30 m of road, no. (%) 566 (3.7) 950 (85.4) 585 (58.7) — —
Pseudoabsences
Total used 46,230 3,339 2,994 3,399 753
Expert absence areas, no. (%) 9,246 (20.0) 801 (24.0) 898 (30.0) — —
Nonexpert areas, nonroads, no. (%) 35,616 (77.0) 634 (19.0) 1,048 (35.0) — —
Nonexpert areas, roads, no. (%) 1,368 (3.0) 1,904 (57.0) 1,048 (35.0) — —
Percentage of species’ range classified as “absence areas” by experts, % 9.4 12.8 18.8 — —

? Presence records for gopher tortoises include locations of burrows, whether occupied or unoccupied, under the assumption that burrow presence

indicates suitable habitat.

Inc., Googleplex, Mountain View, CA) where species
experts identified (outlined) areas in their region of work
where they believed each species was 1) present, if they
had no presence data but had heard unverified reports
or had other reason to think the species was there, or 2)
absent, if they had been to a site but had never detected
the species or had other reason to think the species was
absent. Experts had a minimum of 5 (and usually more
than 15) years of experience with research and
monitoring on our focal species in their assigned region.

For each species, we generated background points
from a boundary that included all areas 1) within the
boundary extent of the species’ range, 2) outside of a
500-m buffer surrounding presence points, and 3) not
within areas where experts believed species were likely
present. We generated sampling pools of 100,000
pseudoabsence points for the gopher tortoise and
30,000 points for all other species to adequately sample
range-wide environmental conditions. Because expert-
defined absence areas likely represented conditions of
low habitat suitability, we gave these areas more weight
when randomly generating pseudoabsence points so
that the percentage of pseudoabsence within these
areas was roughly double the percentage of a species’
range identified as absence areas. For example, whereas
experts identified 9.4% of the range of the gopher
tortoise as ‘“absence areas,” we drew 20% of all
pseudoabsence points from these areas (Table 1).
Additionally, we accounted for potential bias toward
road sampling that can impact HSM predictions (Phillips
et al. 2009). We used the TIGER US road dataset (U.S.
Census Bureau 2016) to identify the percentage of
presence points for each reptile species located on or
within 30 m from roads. We then used the road layer as a
mask to generate an approximately equal percentage of
pseudoabsence points on roads outside of the expert-
absence areas. For example, 58.7% of Florida pine snake
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qualifying presence records were associated with a road
(Table 1); therefore, from all nonexpert-identified ab-
sence areas, we drew 50% of the pseudoabsences from
< 30 m of roads. For the two amphibian species, experts
did not identify a sufficient number of suspected
presence or absence areas in the Google Earth exercise
(areas covered < 3% of species’ ranges), so we
generated pseudoabsence points randomly across each
species’ range. Additionally, we did not account for road
sampling bias for the amphibians because > 99% of
records were found > 50 m from roads.

Environmental predictors

We gathered important environmental and landscape
attributes (hereafter, predictors) that were related to
species’ natural histories based on previous studies and
expert input. Specifically, we had 27 species experts
complete an online survey where they listed environ-
mental, spatial, and biophysical attributes they associat-
ed with ideal habitat and presence of each species at a
site and categorized attributes by their degree of
influence (see Text S1, Figure S1, Supplemental Material)
and discussed responses at an in-person workshop. We
used expert responses and previous studies to prioritize
spatial datasets of important predictors that were
available across the study extent. We obtained spatial
data in the form of 30-m rasters for 17 predictors and
grouped these into seven categories: 1) geographic
ecoregion groups, 2) edaphic (soil) factors, 3) vegetation,
4) disturbance and connectivity, 5) wetlands, 6) climate,
and 7) topography (Table 2). We “smoothed” several
predictors (see Table 2) by calculating average condi-
tions within neighborhoods from 90 to 2,000 m (i.e, a
moving window) to which species presence may be
influenced by conditions at various scales (e.g., within a
home range), based on expert input and previous
studies. We extracted values of all predictors to presence
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Table 2. Environmental predictors tested in habitat suitability models for five at-risk herpetofauna species (gopher tortoise Gopherus
polyphemus, southern hognose snake Heterodon simus, Florida pine snake Pituophis melanoleucus mugitus, gopher frog Lithobates
(Rana) capito, and striped newt Notophthalmus perstriatus) across species’ ranges in the southeastern United States.

Category Code Description Unit Source
Ecoregion ecoreg Ecoregion classes from EPA level IV, used as a Class  EPA ecoregion (EPA 2018a)
categorical factor
Soil drain® Soil drainage index, developed from reclassifying % NRCS Soil Survey Geographic Database
excessively, somewhat excessively drained as suitable (gSSURGO) (USDA NRCS 2016)
(1), well, moderately well, and somewhat poorly
drained as 0.5, everything else as 0
NRCS? Soil suitability rankings for gopher tortoises, % NRCS-derived layer from gSSURGO (USDA
constructed by NRCS and partners based on soil NRCS 2016)
attributes
Vegetation landcov? Reclassed compatible NLCD and FLCLC types % Derived from National Land Cover
(evergreen forest, mixed forest, shrub/scrub, grassland/ Dataset (Multi-Resolution Land
herbaceous, and barren land) as 1, everything else as 0 Characteristics Consortium 2011), Florida
Cooperative Land Cover Dataset (Florida
Fish and Wildlife Conservation
Commission 2018)
Ic_hist_ disturb®  Reclassed historical anthropogenic land use 1938-2001 % USGS/EROS (USGS 2016c), Anthropogenic
(ever categorized as disturbed from anthropogenic use land use trends (USGS 2015, 2016c¢),
[developed, mining, agriculture] in 1938, 1950, 1975, or NLCD
2001 = 1, never categorized as disturbed = 0)
cancov® Tree canopy cover % NLCD
EVidec® Deciduous index, calculated as the difference between index MODIS (NASA 2016a)
summer (May—-July) and winter (December-February)
EVIs divided by the maximum EVI (1999-2016)
Disturbance & firefreq® Fire frequency (2001-2016), derived from MODIS data % MODIS (NASA 2016b), LANDFIRE (USDAFS,
connectivity and LANDFIRE where LANDFIRE cells were given value UsDOlI 2016)
of 0.1 (burned within past 10 y)
edge Edge density index (edge/area) of compatible terrestrial ~ index Derived from landcov
habitat
Wetlands wetavg® Mean wetland cover, derived from NWI database to % Derived from USGS NWI (USGS 2016d)
include only wetlands classified as freshwater emergent,
freshwater ponds, scrub/shrub, small (< 40 ha) lakes, or
forested wetlands not within river floodplains.
wetcount® Count of number of wetlands within neighborhood USGS NWI (USFWS 2020b)
Climate tempsum Mean maximum summer temperature (June-August, °C University of Idaho Gridded Surface
1981-2010) Meteorological Data (U of | METDATA;
Climate Engine 2016)
tempwin Mean minimum winter temperature (December— °C U of | METDATA
February, 1981-2010)
precipyr Mean annual precipitation (1981-2010) mm U of | METDATA
precipsum Mean summer precipitation (June-August, 1981-2010) mm U of | METDATA
precipwin Mean winter precipitation (December-February, 1981~ mm U of | METDATA
2010)
Topographic TPI Topographic position index targeting sandhills and index Derived from DEM USGS Digital Elevation

uplands; derived from 500-m circular neighborhood

Model (DEM;USGS 2017)

@ Predictor was calculated as the mean value within a 90-, 450-, 900-, and 2000-m neighborhood.
EPA = U.S. Environmental Protection Agency; NRCS = Natural Resources Conservation Service; gSSURGO = Gridded soil survey geographic database;

NCLD = National Land Cover Dataset; FLCLC = Florida Cooperative Land Cover; USGS = U.S. Geological Survey; U of | = University of Idaho; NWI =

National Wetland Inventory; TPl = topographic position index; EVlI = Enhanced Vegetation Index.

and pseudoabsence points for fitting HSMs. We briefly
describe predictors in each category below (but see Text
S1, Supplemental Material for additional predictor pro-
cessing details).

Ecoregion. Experts agreed habitats used by each
species may vary geographically across their ranges, so
we created species-specific geographic units by group-
ing EPA level IV ecoregions and fit an HSM for each unit.
We grouped original EPA level IV ecoregions that had
similar ecological characteristics, divided them by major
geographic features identified in the literature or by
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experts as barriers or divisions among distinct genetic
groups, and ensured final ecoregion groups had
sufficient species presences (> 25 locations per group).

Edaphic factors. We created a soil drainage index
predictor using drainage classes from gridded SSURGO
(raster) data from the Natural Resources Conservation
Service. We also obtained the gopher tortoise soil
suitability index previously developed by the Natural
Resources Conservation Service (2017) to compare this
index with the soil drainage index.
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Vegetation. We created four vegetation predictors
representing compatible land cover, historically dis-
turbed habitat, tree canopy cover, and a deciduous
index. We created a compatible land cover predictor by
reclassifying types included in the National Land Cover
Dataset and Florida Cooperative Land Cover Dataset
(Kawula and Redner 2018) as compatible (1: e.g.,
evergreen forest, shrub/scrub) or incompatible (0: e.g.,
developed land, cultivated crops) for each species based
on expert input and previous habitat selection, move-
ment, and natural history studies (Hermann et al. 2002;
Jones and Dorr 2004; Baskaran et al. 2006; Smith et al.
2006; Roznik et al. 2009; Humphries and Sisson 2012;
Miller et al. 2012; Beane et al. 2014; Farmer et al. 2017).
We created a historically disturbed habitat predictor
using historical land cover rasters representing places
that were ever classified as developed or agriculture over
the period 1938-2001. Studies have found historical land
disturbance can lead to suboptimal vegetation commu-
nities for at-risk species in the longleaf system even after
restoration (Hedman et al. 2000; Kirkman et al. 2004;
Brudvig et al. 2013). We included percentage of tree
canopy cover and a deciduous index, which evaluated
the difference in winter and summer greenness from the
Enhanced Vegetation Index, as predictors to capture
vegetation conditions.

Disturbance and connectivity. We developed a fire
frequency predictor representing the percentage of
years an area burned during 2001-2016. We created
this predictor by combining National Aeronautics and
Space Administration MODIS data of annual fire detec-
tions (NASA 2016b) with U.S. Department of Agriculture
Forest Service and U.S. Department of the Interior (2016)
LANDFIRE fuel disturbance data to capture burn
frequency within this period and compensate for
accuracy limitations of each dataset. We created an
edge density predictor layer (ratio of edge length to area
of compatible land cover) to represent degree of habitat
fragmentation.

Wetlands. We used the USGS National Wetlands
Inventory database (USGS 2016d) to calculate the mean
wetland cover and count of wetlands within a neigh-
borhood. We filtered the National Wetlands Inventory
dataset to only include wetlands compatible for the
gopher frog and striped newt: wetlands classified as
freshwater emergent, freshwater ponds, scrub/shrub,
small (< 40-ha) lakes, or forested wetlands not within
river floodplains (contained in the USGS National
Hydrography Dataset;USGS 2016a).

Climate. We included five climate predictors, using
University of ldaho Gridded Surface Meteorological Data,
representing average conditions in a 30-y period (1981-
2010): mean maximum summer (June T1-August 31)
temperature, mean minimum winter (December 1-
February 27) temperature, and mean annual, summer,
and winter precipitation.

Topography. We created a topographic position index
(TPI) raster using the USGS Digital Elevation Model (USGS
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2017). The TPI represents a location’s relative elevation to
its local surroundings; positive TPl generally indicates
ridges (or in the coastal plain, high sandhills), and
negative TPl indicates valleys.

Habitat suitability model processing and validation

We built HSMs using generalized linear models
(logistic regression) where the presence (1) or absence
(0) of a species was the response variable influenced by a
set of predictor variables at a location. We chose logistic
regression because it has been extensively used for
habitat suitability modeling (Elith and Leathwick 2009),
can directly incorporate expected ecological relation-
ships (e.g., linear, unimodal: Engler et al. 2004), and can
perform similarly to other commonly used algorithms
(e.g., MaxEnt: Brotons et al. 2004; Bradter et al. 2018). We
used the predicted probability of presence as a habitat
suitability index (HSI) ranging from 0 (unsuitable) to 1
(most suitable habitat).

We followed standard modeling practices for pres-
ence-background HSMs for each species (Elith and
Leathwick 2009; Franklin 2010): we created a dataset
with all species presence points and a random sample of
pseudoabsence points (drawn from the previously
created sampling pools) at a 1:3 ratio within each
ecoregion group (following Barbet-Massin et al. 2012),
tested predictors for multicollinearity, performed model
comparison via Akaike information criterion (AIC. using
the AlCcmodavg package; Mazerolle and Mazerolle 2019)
to select the combination of predictors that best fit the
data (Burnham and Anderson 2002), and conducted
model validation to measure overall performance and
accuracy of predictions. Because species experts were
confident that some species—habitat relationships vary
by ecoregion, we partitioned the data and performed
model selection for each ecoregion group delineated for
each species. We performed model selection in two
stages to identify the set of predictors that best fit the
data. In the first stage, we performed model selection for
single variables derived at multiple scales where we
compared neighborhood sizes to identify the best-
supported scale (e.g., lowest AIC. among models
comparing soil drainage derived from 90-, 450-, 900-,
and 2,000-m neighborhoods). If two variables were
correlated, we also compared models identifying the
best-supported variable and scale at this stage. In the
second stage, we used the full set of uncorrelated
predictors at their best-supported scales, included all
possible quadratic and 2-way interaction terms among
the predictors, and performed AlC.-based backwards
step-wise regression where predictor effects in the
model were dropped if model fit improved (> 2
reduction in AIC. Burnham and Anderson 2002). In trial
runs, we performed model selection procedures 10 times
for a species where we randomly selected different sets
of pseudoabsence points, but the best-fitting model was
consistent across iterations. Therefore, we used a single
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random sample of pseudoabsence points for each
species to fit HSMs and predict habitat suitability.

We used five-fold cross-validation to test the perfor-
mance of each best-fitting model for each species and
ecoregion group, and we recorded several evaluation
statistics using the ROCR package (Boyce et al. 2002;
Johnson et al. 2006). We calculated the area under the
curve, obtained by the receiver-operating characteristic
plot method (Fielding and Bell 1997), where values of 0.5
indicate model performance no better than random and
values > 0.7 indicate the model can acceptably
discriminate between sites where the species is present
or absent. We calculated sensitivity (the percentage of
correctly classified presences), specificity (the percentage
of correctly classified pseudoabsences), the true skill
statistic (= sensitivity + specificity — 1; Allouche et al.
2006), and the optimal cutoff value (i.e., the HSI value
that maximizes accuracy, as calculated by the percentage
of presence and pseudoabsence points classified as
suitable or unsuitable habitat, respectively). Lastly, we
evaluated the influence of individual predictors on
habitat suitability. We used hierarchical partitioning
analysis (Mac Nally 2002) through the hier.part package
(Walsh and Mac Nally 2015) to measure percentage of
variance explained by individual predictors. We generat-
ed partial response curves to show relationships
between each predictor and habitat suitability by
ecoregion. We predicted habitat suitability for a given
predictor and ecoregion by varying the predictor’s value
across its range (e.g., 0-1) while holding all other
predictors at their means. We did not extrapolate beyond
the range of predictor values in our input data. For
example, we varied fire frequency between 0 and 60%
for the gopher tortoise (the highest value observed in
the data), although fire frequencies up to 100% (i.e.,
burns every year) were possible.

We conducted further model validation where experts
reviewed maps of predicted habitat suitability (see
below) to qualitatively assess accuracy of preliminary
and final models. We first generated preliminary models
using the process described above, printed suitability
maps, and had experts review these during an in-person
workshop. Expert feedback informed us where models
may be under- or overpredicting suitability, prompted us
in some cases to recombine ecoregion groups that
would better capture spatial variation of species—habitat
relationships, and highlighted sites with existing data
that had not been previously shared by experts. We
incorporated feedback (i.e.,, additional data, modified
ecoregion groups) into final models and again had
experts qualitatively assess suitability maps for accuracy.
All experts approved final model predictions.

Summarizing habitat suitability predictions

We used the best-fitting model to predict and map
habitat suitability across each species’ range (in a 30-m
resolution) using the raster package (Hijmans 2016). To
aid in interpreting patterns of suitable habitat, we
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converted the continuous HSI to classes of unsuitable,
low, moderate, and high suitability in ArcGIS. The
threshold value separating low and moderate suitability
classes for each species represented the mean optimal
cutoff value across ecoregion models that maximized
accuracy (i.e., the percentage of presence and pseu-
doabsence points classified as suitable or unsuitable
habitat, respectively). We chose thresholds for low and
high suitability classes to examine patterns of habitat
suitability using more inclusive or restrictive criteria, and
these thresholds generally resulted in a 5% reduction in
classification accuracy, relative to the optimal cutoff
value.

Our experts expressed an interest—one likely shared
by conservation practitioners generally—in the distribu-
tion of suitable habitat in patches > 1 km? (100 ha) that
could support viable populations and be managed more
efficiently than smaller patches. Therefore, we removed
smaller patches and created additional maps that only
included suitable habitat in patches > 1 km? and we
summarized the area of habitat by suitability class at
state- and range-wide scales. Using the > 1-km? patch
map, we further summarized habitat by its current
protection status. Patches of suitable habitat were first
split in ArcGIS by boundaries of protected areas included
in the USGS Protected Areas Database (GreenlInfo
Network 2016), Florida Natural Areas Inventory Conser-
vation Lands Database (Florida Natural Areas Inventory
2016), Georgia Department of Natural Resources Con-
servation Lands Database (Georgia Department of
Natural Resources 2016), or North Carolina Natural
Heritage Program Managed Areas Database (North
Carolina Natural Heritage Program 2016). We classified
any portion of a patch of suitable habitat contained in a
protected area as protected. These areas include publicly
owned and -managed lands as well as private lands
registered in state or federal programs where natural
resource conservation is one of the management goals.
We note that these methods classified habitat on U.S.
Department of Defense and other multiuse lands as
protected. Although these lands are often actively
managed for habitats and wildlife species, there is the
potential of land use shifts in the future that could result
in the loss or degradation of suitable habitat.

Lastly, conservation efforts may be informed by
prioritizing areas suitable for multiple species (e.g.,
Sutherland and deMaynadier 2012; Barrett et al. 2014).
Therefore, we reclassified HSIs for each species into
binary (compatible/incompatible) classes based on
optimal cutoff values (i.e., compatible: moderate and
high suitability classes), overlaid binary rasters for each
species and summed values to indicate the number of
species (0 to 5) with compatible habitat in each cell, and
filtered patches so the final map only included patches of
compatible habitat > 1 km?2 We summarized the area of
habitat compatible for one or more species, as well as
the percentage in protected areas, by state and across
the study extent.
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Table 3. Model fit statistics for the best-fitting models for species habitat suitability (as of 2018) across ecoregion groups in the
southeastern United States for gopher tortoise Gopherus polyphemus (GT), southern hognose snake Heterodon simus (SHS), Florida
pine snake Pituophis melanoleucus mugitus (FPS), gopher frog Lithobates (Rana) capito (GF), and striped newt Notophthalmus
perstriatus (SN). Values represent means (ranges) across ecoregion-specific models. No ranges are presented for the striped newt

because we fit a single, range-wide model.

Model fit statistics

Species No. of presence points AUC Sensitivity Specificity Optimal cutoff value Accuracy, %°
GT 1,401 (100-6,970) 0.93 (0.90-0.97) 0.81 (0.79-0.85) 0.61 (0.60-0.62) 0.27 85.7
SHS 159 (25-699) 0.91 (0.81-0.94) 0.84 (0.75-0.93) 0.85 (0.78-0.90) 0.40 86.0
FPS 111 (33-214) 0.86 (0.75-0.94) 0.77 (0.69-0.83) 0.59 (0.56-0.61) 0.40 82.3
GF 113 (29-371) 0.94 (0.88-0.96) 0.83 (0.79-0.85) 0.61 (0.60-0.62) 0.35 89.4
SN 251 0.97 0.92 0.94 0.35 933

@ Accuracy was calculated as the percentage of presence and pseudoabsence points classified as suitable/unsuitable habitat, respectively.

Results

Influence of environmental predictors on habitat
suitability

After data filtering, we used between 251 (striped
newt) and 15,410 (gopher tortoise) presence records for
HSMs for each species (Table 1). Ecoregion-specific HSMs
performed well for each species with adequate to high
values for the area under the curve ranging between
0.75 and 0.97 (Table 3). Using the optimal cutoff value for
a given species across all of its ecoregion-specific HSMs,
models exhibited a high degree of accuracy and correctly
classified between 82.3% (Florida pine snake) and 93.3%

Table 4. Average percentage of contribution (i.e., variance
explained), which is a measure of predictor importance, of
predictors included in best-fitting models for species habitat
suitability (as of 2018) for gopher tortoise Gopherus polyphemus
(GT), southern hognose snake Heterodon simus (SHS), Florida
pine snake Pituophis melanoleucus mugitus (FPS), gopher frog
Lithobates (Rana) capito (GF), and striped newt Notophthalmus
perstriatus (SN). Values indicate a predictor's mean percentage
contribution when they were included in ecoregion-specific
models for each species.

% of contribution

Predictor® GT SHS FPS GF SN
drain 28.2 50.4 43.9 28.6 19.0
landcov 18.5 234 314 443 31.9
Ic_hist_disturb 8.7 — — — —
cancov 4.6 3.0 — — —
EVIdec 7.3 — — — —
firefreq 21.3 12.6 175 39.8 40.3
precipsum 2.7 20.8 7.7 — —
precipwin — — — — 54
tempsum 5.6 — — — —
TPI 7.8 2.5 9.0 — —
wetavg — — — 6.4

wetcount — — — — 35

@ Predictor abbreviations: drain = soil drainage index; landcov =
compatible land cover; Ic_hist_disturb = historical disturbed land
cover; cancov = canopy cover; EVidec = deciduous index; firefreq =
fire frequency; precipsum = mean annual summer precipitation;
precipwin = mean annual winter precipitation; tempsum = mean
summer temperature; TPl = Topographic Position Index; wetavg =
mean area of nearby wetlands; wetcount = count of nearby wetlands.
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(striped newt) of presence and pseudoabsence points as
suitable/unsuitable habitat, respectively (Table 3).

The number of predictors included in best-fitting
models across ecoregions for a species ranged between
four (gopher frog) and nine (gopher tortoise: Table 4;
Figure 2; Figure S2, Supplemental Material). Besides
ecoregion, 12 of 16 predictors were included in at least
one species’ HSMs (Table 4), and all were significant (P <
0.05) in at least one ecoregion (Table S2, Supplemental
Material). The four predictors not included in any model
were either correlated with other predictors or were not
significant predictors of HSI in any ecoregion. The set of
predictors included in best-fitting models and their
relationships with habitat suitability varied across ecor-
egions for all species except the striped newt (Table S2;
Figure S2, Supplemental Material). Because preliminary
ecoregion-specific models for the striped newt did not fit
the data better than one that did not allow for
ecoregional differences, we used the full dataset to fit
a range-wide model. Predictors included in best-fitting
models represented average conditions across varying
scales (Table S1, Supplementary Material). Soil drainage,
compatible land cover, and fire frequency were the only
predictors with percentage contributions greater than
10% for all species (Table 4), and, although the degree of
their influence varied by ecoregion, these predictors
tended to be positively associated with habitat suitability
(Table S2, Figure S2, Supplemental Material). For example,
HSI for the gopher tortoise increased with soil drainage,
compatible land cover, and as fire frequency increased
from 0 to 0.5 (one fire every other year; Figure 2). For
amphibian species, total area of wetlands in a neighbor-
hood was included in the best model for gopher frogs,
whereas the number of wetlands in a neighborhood was
in the best model for striped newts. See Text S1,
Supplemental Material for additional results.

Spatial patterns of habitat suitability

We present summarized metrics of predicted suitable
habitat range-wide for each species in Table 5 (for
summarized metrics by state, see Table S3, Supplemental
Material). We present maps of gopher tortoise habitat by
predicted suitability class in Figure 3, moderate and high
suitability habitat in > 1-km? patches by protection
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Figure 2. Relationships from the best-fitting model between predicted habitat suitability (as of 2018) and environmental predictors,
by ecoregion group within the species’ range in the southeastern United States (top right), for the gopher tortoise Gopherus

polyphemus.

status for the gopher tortoise in Figure 4, and compatible
habitat in > 1-km? patches for all five species in Figure
S3, Supplemental Material. The amount of suitable
habitat and percentage in protected areas varied by
species and state, and Florida and Georgia contained the
most suitable habitat for this suite of species (Table 6).
Habitat suitability models classified between 8.6%
(gopher frog) and 14.6% (gopher tortoise) of each
species’ range as moderately or highly suitable habitat,
and these percentages were lower for habitat in > 1-km?
patches. Between 28.1% (southern hognose snake) and
47.5% (gopher frog) of suitable habitat in large patches

was on protected lands (Table 5). Using higher cutoff
values resulted in less area classified as suitable for each
species, but a higher percentage of highly suitable
habitat was contained in large patches on protected
lands (range between 36.2% [southern hognose snake]
and 60.1% [gopher frog]).

We present summarized metrics for the area of
compatible habitat (moderate or high suitability classes)
for multiple species and the percentage of habitat on
protected lands in Table 6. The number of species whose
range extended into each state limited the amount of
compatible habitat for multiple species. The percentage

Table 5. Range-wide summary statistics of at-risk species (gopher tortoise Gopherus polyphemus, southern hognose snake
Heterodon simus, Florida pine snake Pituophis melanoleucus mugitus, gopher frog Lithobates (Rana) capito, and striped newt
Notophthalmus perstriatus) habitat suitability area in km? (percentage of total area within species’ range) across species’ ranges in
the southeastern United States (as of 2018). Metrics include area of suitable habitat in > 1-km? (100-ha) patches and in protected

areas®.
Suitability classes: moderate and high Suitability class: high
Total habitat Habitat (km?) in % of > 1-km®>  Total habitat Habitat (km?) in % of > 1-km?

(km?), > 1-km? patches, patches (km?), > 1-km? patches, patches
Species no. (%) no. (%) protected no. (%) no. (%) protected
Gopher tortoise 47,201.0 (14.6) 32,350.4 (10) 353 16,163.7 (5) 8,987.9 (2.8) 479
Southern hognose snake 25,671.7 (9.1) 23,747.7 (8.4) 28.1 13,425.0 (4.7) 12,139.8 (4.3) 36.2
Florida pine snake 29,6314 (11.4) 26,209.2 (10.1) 33.6 12,871.0 (5) 10,834.5 (4.2) 40.7
Gopher frog 27,802.6 (8.6) 26,848.1 (8.3) 47.5 13,852.7 (4.3) 13,295.2 (4.1) 60.1
Striped newt 11,687.3 (8.9) 10,814.9 (8.2) 334 5,965.8 (4.5) 5,410.5 (4.1) 454

@ All patches (or portions of patches) that overlapped protected areas contained in the U.S. Geological Survey Protected Areas Database, Florida
Natural Areas Inventory Conservation Lands Database, or Georgia Department of Natural Resources Conservation Lands Database.
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Figure 3. Spatial distribution of suitable habitat (as of 2018), predicted by habitat suitability models, for the gopher tortoise
Gopherus polyphemus across ecoregion groups (grey-shaded areas) within the species’ range in the southeastern United States.

of compatible habitat for multiple species that was in
protected lands varied between 11 and 70% among
states. Habitat compatible for multiple species rather
than a single species was more concentrated in
protected areas than elsewhere. Habitat suitability
models predicted several large areas to be compatible
for multiple species, as well as several areas in Georgia
and Florida to be compatible habitat for all five species
(Figure 5; Figure S4, Supplemental Material). Most large
areas were on protected lands, including U.S. Depart-
ment of Defense lands, national forests, and state-owned
conservation areas, with smaller areas of compatible
habitat on unprotected lands (Figure 5). Geospatial
datasets (raster and shapefiles) of predicted habitat
suitability for each species and multiple species are
available from U.S. Geological Survey’'s ScienceBase-
Catalog (Crawford et al. 2020; Data A1, Archived Material).
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Discussion

Our study identified important species—habitat rela-
tionships and the range-wide distribution and protection
status of suitable habitat for five at-risk species in the
longleaf pine ecosystem, which can directly inform
several conservation decisions. We used a modeling
approach that expert judgment informed over multiple
stages of input and validation. Because numerous at-risk
species are designated for formal status assessments or
are the subjects of conservation planning initiatives, our
work adds to previous habitat suitability modeling
studies to demonstrate an expert-informed approach
that produces decision-relevant information about hab-
itat conditions even when available data, such as true
absences, are limited.

Across all five species, the most important predictors
of suitable habitat were well-drained soil, compatible
land cover, and frequent fires, and habitat suitability
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Figure 4. Spatial distribution of large patches (> 1 km? [100 ha]) of habitat classified by protection status and habitat suitability class
(as of 2018), predicted by habitat suitability models, for the gopher tortoise Gopherus polyphemus across ecoregion groups (grey-
shaded areas) within the species’ range in the southeastern United States.

tended to increase with each predictor. These relation-
ships are consistent with previous findings that the focal
species generally favor longleaf pine sandhills, scrub,
flatwoods, and other habitats characterized as xeric and
fire-dependent (Auffenberg and Franz 1982; Tuberville et
al. 2000; Smith et al. 2006; Roznik et al. 2009; Miller et al.
2012; Beane et al. 2014; Farmer et al. 2017). Specifically,
predicted suitability for species reached its peak in most
ecoregions when fire frequency was above a threshold
between 0.5 and 0.2 (Figure 2; Figure S2, Supplemental
Material), corresponding to fires occurring once every 2
to 5 years, respectively. This fire-return interval aligns
well with prevailing recommendations regarding fre-
quency of prescribed burning to maintain native
diversity in longleaf pine and related systems (Platt et
al. 1988; Glitzenstein et al. 1995; Russell et al. 1999;
Glitzenstein et al. 2003).

For amphibian species, different wetland predictors
(total area of wetlands and number of wetlands in a
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neighborhood) were included in best models for gopher
frogs and striped newts, respectively. These two
predictors were highly correlated, so these results reflect
which wetland predictor outperformed the other in
preliminary models. Both species are found in meta-
population complexes with multiple breeding ponds
(Greenberg 2001; Johnson 2005; Humphries and Sisson
2012), but additional research is needed to understand
the influence of size versus number of wetlands on meta-
population dynamics for these species. Lastly, relation-
ships between many predictors and HSI varied across
ecoregions. This is not surprising as wide-ranging species
are often found in multiple ecological settings (e.g.,
upland ridges and sandhills, mesic flatwoods) and
biological communities depending on their geography
(e.g., Castelldn et al. 2018), which warrants further study
and consideration when conducting localized manage-
ment.
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Table 6. Area of habitat (km?) in > 1-km? patches that was classified as compatible (as of 2018) for one or multiple species out of
five focal, at-risk species (gopher tortoise Gopherus polyphemus, southern hognose snake Heterodon simus, Florida pine snake
Pituophis melanoleucus mugitus, gopher frog Lithobates (Rana) capito, and striped newt Notophthalmus perstriatus) in the
southeastern United States (top), and percentage of suitable habitat on protected areas® (bottom), summarized by state and
Southeast-wide. Empty cells indicate that the specified number of species are not found in a state.

No. of species

State 1 2 3 4 5

Area of compatible habitat (km?) in > 1-km? patches by no. of species®
Alabama 3,524 1,207 329 33 —
Florida 17,255 7,807 5,958 3,222 567
Georgia 8,435 5,498 3,539 1,264 586
Louisiana 189 — — — —
Mississippi 2,912 18 — — —
North Carolina 1,670 765 — — —
South Carolina 4,497 2,338 885 334 —
Southeast-wide 38,483 17,633 10,710 4,853 1,153

% of compatible patches > 1-km? in protected areas by no. of species
Alabama 9.0 26.7 214 10.6 —
Florida 259 359 48.1 69.3 69.6
Georgia 12.0 15.5 18.2 27.6 46.2
Louisiana 12.5 — — — —
Mississippi 54.8 37.0 — — —
North Carolina 233 56.1 — — —
South Carolina 21.9 30.0 34.0 41.9 —
Southeast-wide 22.8 29.0 36.2 56.2 57.7

@ All patches (or portions of patches) that overlapped protected areas contained in the U.S. Geological Survey Protected Areas Database, Florida
Natural Areas Inventory Conservation Lands Database, or Georgia Department of Natural Resources Conservation Lands Database.
b Compatible habitat indicates areas originally classified as moderate or high suitability for one or more species.

We could not include all attributes that were ranked
by experts or known from previous studies to influence
habitat suitability for species (Figure S1, Supplemental
Material) because the spatial data were not available at
the extent or resolution required for our study. Previous
studies have found or suggested positive effects of
herbaceous groundcover and negative effects of red
imported fire ants Solenopsis invicta and feral hogs Sus
scrofa on habitat suitability and survival of focal species
across their ranges (Tuberville et al. 2000; Johnson 2005;
Smith et al. 2006; Roznik et al. 2009; Miller et al. 2012;
Mclntyre et al. 2019). However, fine-grain spatial datasets
are not currently available for these predictors across
broader scales. Moreover, we used 30-y averages of
climate predictors in models, but additional climatic
variables that better capture the intensity and frequency
of events like storms or drought may have stronger
influences on habitat suitability and species presence
(Smith et al. 2006; Blaustein et al. 2010; Farmer et al.
2017). For the two amphibian species, experts ranked
wetland hydroperiod as having the greatest influence on
habitat suitability (Figures S1d and Sle, Supplemental
Material), which is supported by previous studies (Green-
berg 2001; Johnson 2005), but there are currently no
practical or reliable data layers for hydroperiod, partic-
ularly at the extent of our models. Recent studies have
developed models predicting hydroperiod of ephemeral
wetlands at local scales using climate, soil, and topo-
graphic data (Greenberg et al. 2015; Riley et al. 2017);
however, incorporation of hydroperiod models over
larger spatial extents necessary for conducting range-
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wide HSMs will require overcoming challenges of
computer processing speed and data storage.

As with all spatial models of habitat suitability and
species distributions, the accuracy of datasets used as
predictors may vary. Remotely sensed data products and
large national datasets may contain inherent errors of
omission and commission, and some degree of misclas-
sification has been found in the National Land Cover
Dataset (Wickham et al. 2018) and the National Wetland
Inventory dataset, especially for small, ephemeral wet-
lands used by focal amphibian species in this study (e.g.,
Sullivan et al. 2017). We did not perform field verification
or reviews of ancillary datasets/aerial imagery to assess
the accuracy of these datasets in this study; however, we
did find that 98% of our amphibian locations from
wetland sampling were on or < 30 m from a wetland in
our filtered National Wetland Inventory dataset. Despite
any limitations of predictor datasets, our final HSMs
exhibited high degrees of accuracy, produced results
consistent with previous studies and expert opinion, and
can provide reliable information useful for conservation
decisions.

Predicted areas of higher habitat suitability tended to
highlight known species strongholds, such as national
forests, U.S. Department of Defense lands, and other
conservation lands. Habitat suitability models predicted
that several large protected lands (including Eglin Air
Force Base, Blackwater River State Forest, and Ocala
National Forest in Florida; Fort Benning and Fort Stewart
in Georgia; and the Savannah River Site in South
Carolina) would provide suitable habitat for three or
more out of five focal herpetofauna species in our study
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Figure 5. Spatial distribution of habitat in > 1-km? (100-ha) patches classified by protection status and the number of focal, at-risk
species of herpetofauna (out of the five evaluated in this study: gopher tortoise Gopherus polyphemus, southern hognose snake
Heterodon simus, Florida pine snake Pituophis melanoleucus mugitus, gopher frog Lithobates [Rana] capito, and striped newt
Notophthalmus perstriatus) for which habitat was predicted to be compatible (classified as moderate or high suitability, as of 2018).
The grey background represents the full study extent across species’ ranges in the southeastern United States.

(Figure 5). The amount and distribution of currently
protected suitable habitat likely reflects efforts taken in
recent years by federal and state agencies and other
regional conservation networks (e.g., America’s Longleaf
Restoration Initiative 2020) to proactively acquire,
restore, and manage key areas for habitats occupied by
at-risk species, especially with prescribed fire and
thinning of upland forests. However, many patches of
suitable habitat fell on unprotected lands, and all states
had < 55% of their large patches of moderately suitable
habitat on protected lands (Table 6). Our results may
inform practitioners about specific parcels within their
jurisdictions that 1) are highly suitable and protected,
motivating continued management; 2) are highly suit-
able but unprotected, motivating parcel acquisition or
enrollment of private landowners in easements or
incentive programs; or 3) are less suitable but may serve
as reserves or corridors between highly suitable patches
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if acquired, managed, or restored as necessary (Guisan et
al. 2013). Additionally, predicted suitable habitat patches
without known species records could be prioritized for
survey efforts to document new populations.

An important limitation of our study was that we did
not formally evaluate the performance of models
generated by our expert-informed approach with others
generated without expert input. Previous studies quan-
titatively assessing model accuracy have found expert-
informed models perform variably well compared to
empirically driven models (e.g., Pearce et al. 2001; Brandt
et al. 2017; Di Febbraro et al. 2018), but these studies
vary in how experts informed model construction.
Although outside the scope of this study, further studies
could quantitatively measure model accuracy when
generating background points at different proportions
inside and outside expert-informed absence areas and
compare these approaches against those using back-
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ground points drawn at random without constraints.
Still, researchers can achieve more accurate predictions
of species distributions and habitat suitability with true
absence data, which are often unavailable for at-risk
species. Increased coordination among federal and state
agencies, along with other researchers and managers, to
systematically document and store presence-absence
data from surveys may be a means to improve the
quality of future HSM predictions for at-risk species.

Despite this limitation, we qualitatively observed or
can reasonably suspect several benefits from using this
approach that overcame challenges inherent in model-
ing habitat suitability at large (i.e., range-wide) scales,
and our approach could be replicated for at-risk, data-
limited species. First, we captured expert judgment,
along with published studies, to prioritize sets of
predictors to test in models that represent key biophys-
ical needs and threats for species. Although some
consultation with experts is common in HSM applica-
tions (e.g., Murray et al. 2009; Barrett et al. 2014), we took
a formal approach using online surveys and in-person
discussions that could be easily replicated for other
species. This expert input helped identify areas where
future research is needed by revealing factors the experts
hypothesized to influence species survival and habitat
quality but for which published studies or datasets were
lacking.

Second, we used expert input to determine appropri-
ate scales for creating averaged predictors that repre-
sented best judgments of species’ home ranges or
dispersal distances when this information was not
available from previous studies (e.g., Humphries and
Sisson 2012). Third, we used expert judgment to
delineate ecoregion groups that represented ecological
or genetic variability of species, even when this
information was not available in published studies. Using
this expert input allowed us to account for spatial
variation in species-habitat relationships, which likely
increases accuracy of range-wide habitat suitability
predictions (Murphy and Lovett-Doust 2007). Fourth,
we addressed the challenge of lacking true absence data
by using expert judgment to inform where we should
generate pseudoabsence points to better capture areas
where species do or do not exist in HSMs. Other studies
have found HSM prediction accuracy increases with the
quality of absence information provided (Brotons et al.
2004; Gu and Swihart 2004), even when models use
pseudoabsences that were informed by expert judgment
(Murray et al. 2009; O'Leary et al. 2009; Bradter et al.
2018). Our method, which used an interactive mapping
platform (Google Earth) to identify suspected areas of
species presence and absence when no formal data were
collected, adds another tool to those used in previous
studies that may be useful for eliciting spatially explicit
expert knowledge to aid future applications of HSMs.

Lastly, many of our experts were researchers and
managers who can potentially use information about
habitat suitability to make decisions, and involving them
throughout all stages of the study allowed us to produce
trustworthy, decision-relevant results. For example,
experts conveyed through in-person discussions during
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the premodeling stage an interest in knowing where
habitat was suitable for multiple species and contained
in large (> 1-km? patches that could allow for cost-
effective management actions, which guided how we
summarized HSM predictions. It is also reasonable that
involvement of experts before, during, and after HSM
development increased transparency of modeling tools,
experts’ understanding of the overall process, and their
trust in the results (Martin et al. 2012; Addison et al. 2013;
Guisan et al. 2013). Without their involvement early in
the model-building process, decision makers may object
to or distrust the use of models entirely for a particular
context and disregard model outputs when making
decisions (Addison et al. 2013). In our study, experts
qualitatively evaluated the accuracy of preliminary
results, gave feedback that improved model perfor-
mance, and approved final results. We used varied
methods to frequently communicate between groups of
scientists, decision makers, and other experts (i.e., e-mail,
online exercises, phone calls, in-person workshops), and
although it took sustained effort, this degree of expert
and decision-maker involvement was beneficial for
generating quality, decision-relevant information that
can aid at-risk species conservation. Practitioners apply-
ing HSMs in the future may agree the benefits outweigh
any time- or effort-related costs of collaboration. Given
the number of at-risk species in need of habitat
assessments and conservation decisions, our methods
and other suggested practices provide sound guidance
to those leading modeling efforts involving collabora-
tions with decision makers (e.g., Addison et al. 2013;
Guisan et al. 2013). These practices include identifying
the problem and objectives that models can address,
looking for creative opportunities to capture on-the-
ground expert knowledge and fill data gaps, and
facilitating effective communication between scientists
and stakeholders that builds trust of each other, the
approach, and the results.
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Florida pine snake Pituophis melanoleucus mugitus, (d)
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Figure S2. Relationships from the best-fitting model
between habitat suitability (as of 2018) and environ-
mental predictors, by ecoregion group within at-risk
species’ ranges in the southeastern United States (shown
in insets). Species-specific results are given for (a) gopher
tortoise Gopherus polyphemus, (b) southern hognose
snake Heterodon simus, (c) Florida pine snake Pituophis
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Figure S4. Spatial distribution of habitat (as of 2018)
in > 1-km? (100-ha) patches classified by the number of
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evaluated in this study: gopher tortoise Gopherus
polyphemus, southern hognose snake Heterodon simus,
Florida pine snake Pituophis melanoleucus mugitus,
gopher frog Lithobates [Rana] capito, and striped newt
Notophthalmus perstriatus) for which habitat was
predicted to be compatible (moderate or high suitabil-
ity). The grey background represents the full study
extent across species’ ranges in the southeastern United
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Data A1. Geospatial datasets (raster and shapefiles) of
predicted habitat suitability (as of 2018) for each of five
at-risk species of herpetofauna (gopher tortoise Gophe-
rus polyphemus, southern hognose snake Heterodon
simus, Florida pine snake Pituophis melanoleucus
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striped newt Notophthalmus perstriatus) in the south-
eastern United States. Available: https://doi.org/10.5066/
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